## Sample Pages

## Geometry

## Lesson 6 Supplementary and Complementary Angles

(1) Geometry Instruction Manual - Lesson 6
(2) Geometry Student Text - Lesson 6
(3) Geometry Test booklet - Lesson 6
(4) Geometry Solutions - Lesson 6
(5) Geometry Honors - Lesson 6
(6) Geometry Honors Solutions - Lesson 6

In Geometry, students master points, lines, planes, angles, circles, triangles, quadrilaterals, Pythagorean Theorem, conic sections, proofs and more topics.

These Geometry Sample Pages will give you an idea of Math-U-See's unique method of instruction. Lesson-by-Lesson videos, Comprehensive Instruction Manuals, Student materials and Honours Pages are fully integrated to support your student in mastering Geometry.

If you believe that Geometry is the level for your student to begin, please confirm this by completing our free online placement tests.

To Your Success!!

# Supplementary and Complementary Angles 

Greek Letters

Figure 1


$$
\begin{aligned}
& \alpha=\text { alpha } \\
& \beta=\text { beta } \\
& \gamma=\text { gamma } \\
& \delta=\text { delta }
\end{aligned}
$$

Adjacent Angles - Angles that share a common side and have the same origin are called adjacent angles. Th y are side by side. In fi ure $1, \alpha$ is adjacent to both $\beta$ and $\delta$. It is not adjacent to $\gamma$. In fi ure 1 , there are four pairs of adjacent angles: $\alpha$ and $\beta, \beta$ and $\gamma, \gamma$ and $\delta, \delta$ and $\alpha$.

In figure 2, we added points so we can name the rays that form the angles. The common side shared by adjacent angles $\alpha$ and $\beta$ is $\overrightarrow{V Q}$.

Figure 2


Given: $\stackrel{\leftrightarrow T}{\mathrm{RT}} \stackrel{\leftrightarrow \mathrm{QS}}{\mathrm{Q}}=\mathrm{V}$

Vertical Angles - Notice that $\angle \gamma$ is opposite $\angle \alpha$. Angles that share a common origin and are opposite each other are called vertical angles. They have the same ruent. $\angle \beta$ and $\angle \delta$ are also vertical angles.

Figure 2 (from previous page)


If $\mathrm{m} \angle \beta$ is $115^{\circ}$, then $\mathrm{m} \angle \delta$ is also $115^{\circ}$. If this is true, then do we have enough information to find $\mathrm{m} \angle \alpha$ ? We know from the information given in figure 2 that $\overleftrightarrow{\mathrm{RT}}$ and $\overleftrightarrow{\mathrm{QS}}$ are lines. Th refore, $\angle \mathrm{RVT}$ is a straight angle and has a measure of $180^{\circ}$. If $\angle \mathrm{RVQ}(\angle \beta)$ is $115^{\circ}$, then $\angle \mathrm{QVT}(\angle \alpha)$ must be $180^{\circ}-115^{\circ}$, or $65^{\circ}$. Since $\angle \mathrm{RVS}(\angle \gamma)$ is a vertical angle to $\angle \mathrm{QVT}$, then it is also $65^{\circ}$.

Supplementary Angles - Two angles such as $\angle \alpha$ and $\angle \beta$ in figure 2, whose measures add up to $180^{\circ}$, or that make a straight angle (straight line), are said to be supplementary. In figure 2 , the angles were adjacent to each other, but they don't have to be adjacent to be classified as supplementary angles.

Figure 3


All drawings are in the same plane unless otherwise noted.


Complementary Angles - We can observe many relationships in figure 3. $\angle 1$ is adjacent to both $\angle 6$ and $\angle 2$. Angle 3 and $\angle 6$ are vertical angles, as are $\angle 1$ and $\angle 4$. Angle 6 and $\angle 3$ are also right angles since $\overleftrightarrow{\mathrm{DF}} \perp \overleftrightarrow{\mathrm{GE}}$. The new concept here is the relationship between $\angle \mathrm{DHE}$ and $\angle \mathrm{GHF}$. Both of these are right angles because the lines are perpendicular; therefore their measures are each $90^{\circ}$.
Then $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$, and $\mathrm{m} \angle 4+\mathrm{m} \angle 5=90^{\circ}$. Two angles whose measures add up to $90^{\circ}$ are called complementary angles. Notice that from what we know about vertical angles, $\angle 1$ and $\angle 5$ are also complementary. Let's use some real measures to verify our conclusions.

Figure 4 (a simplified figure 3)


In figure 4, let's assume that $\mathrm{m} \angle 1=47^{\circ}$. Then $\mathrm{m} \angle 2$ must be $43^{\circ}$, since $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$ add up to $90^{\circ}$. If $\mathrm{m} \angle 1=47^{\circ}$, then $\mathrm{m} \angle 4$ must also be $47^{\circ}$, since $\angle 1$ and $\angle 4$ are vertical angles. Also, $\mathrm{m} \angle 5$ must be $43^{\circ}$. So $\angle 1$ and $\angle 5$ are complementary, as are $\angle 2$ and $\angle 4$. Remember that supplementary and complementary angles do not have to be adjacent to qualify.

It helps me to not get supplementary and complementary angles mixed up if I think of the $s$ in straight and the $s$ in supplementary. The $c$ in complementary may be like the $c$ in corner.

## Student Text: Lesson Practice 6A

Use the drawing to fill in the blanks.

1. $\angle \mathrm{AHC}$ is adjacent to $\angle$ $\qquad$ and $\angle$ $\qquad$ .
2. $\angle B H D$ is adjacent to $\angle$ $\qquad$ and $\angle$ $\qquad$ .
3. $\angle$ FHB and $\angle$ $\qquad$ are vertical angles.
4. $\angle \mathrm{FHC}$ and $\angle$ $\qquad$ are vertical angles.
5. $\angle \mathrm{LFJ}$ and $\angle$ $\qquad$ are supplementary angles.
6. $\angle \mathrm{FHC}$ and $\angle$ $\qquad$ are complementary angles.
7. $\angle \mathrm{JFH}$ and $\angle$ $\qquad$ are supplementary angles.
8. $\angle B H D$ and $\angle$ $\qquad$ are complementary angles.


Given: $\overleftrightarrow{A B}, \overleftrightarrow{C D}, \overleftrightarrow{L G}$, and $\overleftrightarrow{J K}$ are straight lines. $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$.

The drawing is a sketch and not necessarily to scale. Don't make any assumptions about the lines and angles other than what is actually given.
9. If $\mathrm{m} \angle \mathrm{CHA}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{BHD}=$ $\qquad$ .

## Student Text: Lesson Practice 6A

Use the drawing from the previous page to fill in the blanks.
10. If $\mathrm{m} \angle \mathrm{JFL}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{KFH}=$ $\qquad$ .
11. If $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{FHA}=$ $\qquad$ .
12. If $\mathrm{m} \angle \mathrm{CHA}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{FHC}=$ $\qquad$ .
13. If $\mathrm{m} \angle \mathrm{LFJ}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{LFK}=$ $\qquad$ .
14. If $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{AHG}=$ $\qquad$ .

Use the letters to match each term to the best answer.
15. $\beta$ $\qquad$
16. adjacent angles $\qquad$ b. alpha
17. supplementary angles $\qquad$ c. always have the same measure
18. $\alpha$ $\qquad$
d. add up to $90^{\circ}$
19. complementary angles $\qquad$ e. add up to $180^{\circ}$
20. vertical angles $\qquad$ f. beta

## Student Text: Lesson Practice 6B

Use the drawing to fill in the blanks.

1. $\angle \mathrm{MNS}$ is adjacent to $\angle$
and $\angle$ $\qquad$ .
2. $\angle \mathrm{QNT}$ is adjacent to $\angle$ $\qquad$ and $\angle$ $\qquad$ .
3. $\angle$ SRN and $\angle$ $\qquad$ are vertical angles.
4. $\angle \mathrm{MNS}$ and $\angle$ $\qquad$
are vertical angles.
5. $\angle \mathrm{QNP}$ and $\angle$ $\qquad$
are supplementary angles.
6. $\angle$ QNT and $\angle$ $\qquad$
are complementary angles.
7. $\angle \mathrm{NRZ}$ and $\angle$ $\qquad$
are supplementary angles.
8. $\angle \mathrm{MNS}$ and $\angle$
are complementary angles.

Given: All lines that appear to be straight lines are straight lines. $m \angle Q N P=90^{\circ}$.

The drawing is a sketch and not necessarily to scale. Do not make any assumptions about the lines and angles other than what is actually given.


## Student Text: Lesson Practice 6B

Use the drawing from the previous page to fill in the blanks.
9. If $\mathrm{m} \angle \mathrm{MNS}=35^{\circ}$, then $\mathrm{m} \angle \mathrm{SNR}=$ $\qquad$ .
10. If $\mathrm{m} \angle \mathrm{MNS}=35^{\circ}$, then $\mathrm{m} \angle \mathrm{TNP}=$ $\qquad$ .
11. If $\mathrm{m} \angle \mathrm{QNP}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{PNR}=$ $\qquad$ .
12. If $\mathrm{m} \angle \mathrm{MSN}=95^{\circ}$, then $\mathrm{m} \angle \mathrm{NSR}=$ $\qquad$ .
13. If $\mathrm{m} \angle \mathrm{SRN}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{YRZ}=$ $\qquad$ .
14. If $\mathrm{m} \angle \mathrm{XNY}=55^{\circ}$, then $\mathrm{m} \angle \mathrm{QNT}=$ $\qquad$ .

Fill in the blanks with the correct terms.
15. The name of the Greek letter $\alpha$ is $\qquad$ .
16. Two angles whose measures add up to $90^{\circ}$ are called $\qquad$ .
17. Two angles whose measures add up to $180^{\circ}$ are called $\qquad$ .
18. The name of the Greek letter $\gamma$ is $\qquad$ .
19. Intersecting lines form two pairs of $\qquad$ angles.
20. The name of the Greek letter $\delta$ is $\qquad$ -

## Student Text: Systematic Review 6C

Use the drawing to fill in the blanks.

1. $\angle 1$ is adjacent to $\angle$ $\qquad$ and $\angle$ $\qquad$ .
2. $\angle 1$ and $\angle$ $\qquad$ are vertical angles.
3. $\angle \mathrm{AFE}$ and $\angle$ $\qquad$ are vertical angles.
4. $\angle$ $\qquad$ is a straight angle.
5. $\angle$ $\qquad$ is an obtuse angle.
6. $\angle 2$ and $\angle$ $\qquad$ are complementary angles.

From now on, we will assume lines that look straight to be straight lines. Do not make any assumptions about the size of the angles.
7. If $\mathrm{m} \angle 2=50^{\circ}$, then $\mathrm{m} \angle 1=$ $\qquad$ Why?
8. If $\mathrm{m} \angle 2=50^{\circ}$, then $\mathrm{m} \angle 4=$ $\qquad$ Why?
9. $\angle 5$ and $\angle$ $\qquad$ are supplementary angles.
10. If $\mathrm{m} \angle 4=40^{\circ}$, then $\mathrm{m} \angle 5=$ $\qquad$ Why?
11. Name two acute angles.
12. Name two right angles.

## Student Text: Systematic Review 6C

Follow the directions.
13. Draw a line segment $1 \frac{1}{2}$ inches long. Then draw its perpendicular bisector using compass and straightedge.
14. Draw a $52^{\circ}$ angle and bisect it.

Fill in the blanks with the correct terms.
15. Two lines forming a right angle are said to be $\qquad$ to each other.
16. A right angle has a measure of $\qquad$ ${ }^{\circ}$.
17. A straight angle has a measure of $\qquad$ ${ }^{\circ}$.
18. The measures of two complementary angles add up to $\qquad$ ${ }^{\circ}$.
19. The measures of two supplementary angles add up to $\qquad$ ${ }^{\circ}$.
20. The intersection of two sets with no elements in common is the
$\qquad$ set.

## Student Text: Systematic Review 6D

Use the drawing to tell if each statement is true or false.

1. $\angle 2$ and $\angle 5$ are vertical angles.
2. If $\overleftrightarrow{F H} \perp \overleftrightarrow{D K}$, then $\angle 2$ and $\angle 3$ are supplementary.
3. $\angle 3$ and $\angle 4$ are adjacent angles.
4. $\angle F G K$ is known to be a right angle.
5. $\overrightarrow{G J}$ is the common side for $\angle J G K$ and $\angle K G F$.


Given: $\overleftrightarrow{D K}, \overleftrightarrow{E}$, and $\overleftrightarrow{F H}$ intersect at G. Lines that look straight are
6. $\angle 2, \angle 3$, and $\angle 5$ appear to be acute. straight. Do not make any other assumptions.

Use the drawing to fill in the blanks.
7. If $\mathrm{m} \angle 3=39^{\circ}$, then $\mathrm{m} \angle 6=$ $\qquad$ . Why?
8. If $\overleftrightarrow{\mathrm{FH}} \perp \overleftrightarrow{\mathrm{DK}}$ and $\mathrm{m} \angle 3=39^{\circ}$, then $\mathrm{m} \angle 2=$ $\qquad$ .Why?
9. If $\overleftrightarrow{\mathrm{FH}} \perp \overleftrightarrow{\mathrm{DK}}$, then $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 4$ are each $\qquad$ Why?
10. If $\mathrm{m} \angle 1$ is $90^{\circ}$, then it is $\mathrm{a}(\mathrm{n})$ $\qquad$ angle.
11. If the measures of $\angle 4$ and $\angle 1$ add up to $180^{\circ}$, they are called $\qquad$ angles.
12. $m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6=$ $\qquad$ ${ }^{\circ}$.

## Student Text: Systematic Review 6D

Use the letters to match each description to the correct term.
13. Greek letter beta $\qquad$
14. less than $90^{\circ}$ $\qquad$
15. measures add up to $90^{\circ}$ $\qquad$ c. $\delta$
16. Greek letter alpha $\qquad$ d. obtuse
17. Greek letter gamma $\qquad$
18. between $90^{\circ}$ and $180^{\circ}$ $\qquad$
19. measures add up to $180^{\circ}$ $\qquad$ g. $\gamma$
20. Greek letter delta $\qquad$ h. supplementary

## Student Text: Systematic Review 6E

Use the drawing to fill in the blanks or answer the questions.

1. Name a line containing $\overrightarrow{\mathrm{RV}}$.
2. Name a line segment contained in RT.
3. If all eight angles were congruent, rather than as given, what would the measure of each be?
4. Since $m \angle 1$ is $90^{\circ}$, what is $\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4$ ?
5. $\angle 4+\angle 5$ is $a(n)$ $\qquad$ angle. is a sketch.
6. Are $\angle 1$ and $\angle 5$ supplementary?
7. Are $\angle 1$ and $\angle 5$ complementary?

Given: $\overleftrightarrow{S W} \perp \overleftrightarrow{Q V}$
All four straight lines intersect at R.

Remember the drawing

Use the measurements given in the questions, even if the drawing appears to be different.
8. Are $\angle 1$ and $\angle 5$ vertical angles?
9. If $\angle 2 \cong \angle 3 \cong \angle 4$, then $\mathrm{m} \angle 8=$ $\qquad$ ${ }^{\circ}$.
10. $\angle 6 \cong \angle$ $\qquad$ .
11. $\angle 2$ and $\angle 3$ are $\qquad$ angles (size).
12. If $\mathrm{m} \angle 2=25^{\circ}$, and $\mathrm{m} \angle 4=35^{\circ}$, then $\mathrm{m} \angle 3=$ $\qquad$ .
13. If $\mathrm{m} \angle 2=25^{\circ}$, and $\mathrm{m} \angle 4=35^{\circ}$, then $\mathrm{m} \angle \mathrm{YRX}=$ $\qquad$ .
14. Which ray is the common side for $\angle S R Q$ and $\angle Q R X$ ?

## Student Text: Systematic Review 6E

15. Draw the perpendicular bisector of the given line segment.

## $A \bullet B$

16. Draw a ray that bisects the given angle.

(1) 18 Sharpen your algebra skills!

Be very careful when squaring negative numbers.
EXAMPLE $1 \quad(-5)^{2}=(-5)(-5)=+25$
EXAMPLE $2 \quad-(8)^{2}=-(8)(8)=-64$

EXAMPLE $3-6^{2}=-(6)(6)=-36$
17. $(-7)^{2}=$
18. $-(15)^{2}=$
19. $-12^{2}=$
20. $-(9)^{2}=$

## Test Booklet: Lesson 6 Test

Circle your answer.

1. Two angles whose measures add up to $180^{\circ}$ are called:
A. straight
B. complementary
C. acute
D. obtuse
E. supplementary
2. Vertical angles are:
A. supplementary
B. complementary
C. congruent
D. adjacent
E. obtuse
3. $\mathrm{m} \angle \mathrm{XYZ}=35^{\circ}$. What is the measure of its complement?
A. $145^{\circ}$
B. $55^{\circ}$
C. $35^{\circ}$
D. $65^{\circ}$
E. $125^{\circ}$
4. $\angle 1$ is adjacent to:
A. $\angle 1$
B. $\angle 2$ and $\angle 5$
C. $\angle 3$
D. $\angle 4$
E. $\angle 2$
5. $\mathrm{m} \angle \mathrm{GEF}=40^{\circ}$. What is the measure of its supplement?
A. $60^{\circ}$
B. $50^{\circ}$
C. $140^{\circ}$
D. $320^{\circ}$
E. $40^{\circ}$
6. The sum of $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$ is:
A. $90^{\circ}$
B. $180^{\circ}$
C. $45^{\circ}$
D. $360^{\circ}$
E. can't tell from information given

## Test Booklet: Lesson 6 Test

Use this diagram for \#6-10.


Given: $\overrightarrow{W T} \perp \overleftrightarrow{S V} ; \overleftrightarrow{R U} \cap \overleftrightarrow{S V}$ at W.
8. The measure of $\angle U W V$ is:
A. $45^{\circ}$
B. $30^{\circ}$
C. $90^{\circ}$
D. $35^{\circ}$
E. can't tell from information given
9. $\angle 4$ and what other angle are vertical angles?
A. $\angle 3$
B. $\angle 4$
C. $\angle 2$
D. $\angle 1$
E. $\angle T W V$
10. $\angle S W T+\angle T W U+\angle U W V=$
A. $180^{\circ}$
B. $360^{\circ}$
C. $90^{\circ}$
D. $100^{\circ}$
E. can't tell from information given

Use this diagram for \#11-15.


Given: $\overleftrightarrow{F C}, \overleftrightarrow{A D}, \overleftrightarrow{B E}$ intersect at G.
A. if the quantity in column I is greater.
B. if the quantity in column II is greater.
C. if the two quantities are equal.
D. if the relationship cannot be determined from the information given.

Write the correct letter in the blank.


## Solutions: Lesson 6

## Lesson Practice 6A

1. $\angle \mathrm{AHG}, \angle \mathrm{CHF}$
2. $\angle \mathrm{FHB}, \angle \mathrm{GHD}$
3. $\angle \mathrm{AHG}$
4. $\angle \mathrm{GHD}$
5. $\angle \mathrm{LFK}$ or $\angle \mathrm{JFH}$
6. $\angle \mathrm{CHA}$
7. $\angle \mathrm{HFK}$ or $\angle \mathrm{JFL}$
8. $\angle \mathrm{DHG}$
9. $40^{\circ}$ : vertical angles
10. $65^{\circ}$ : vertical angles
11. $90^{\circ}$ : supplementary angles
12. $50^{\circ}$ : complementary angles
13. $115^{\circ}$ : supplementary angles
14. $90^{\circ}$ : vertical angles
15. f
16. a
17. e
18. b
19. d
20. c

## Lesson Practice 6B

1. $\angle \mathrm{MNQ}, \angle \mathrm{SNR}$
2. $\angle \mathrm{MNQ}, \angle \mathrm{TNP}$
3. $\angle \mathrm{YRZ}$
4. $\angle \mathrm{TNP}$
5. $\angle \mathrm{QNM}$ or $\angle \mathrm{PNR}$
6. TNP
7. $\angle Y R Z$ or $\angle S R N$
8. $\angle S N R$
9. $55^{\circ}$ : complementary angles
10. $35^{\circ}$ : vertical angles
11. $90^{\circ}$ : supplementary angles
12. $85^{\circ}$ : supplementary angles
13. $40^{\circ}$ : vertical angles
14. $55^{\circ}$ : vertical angles
15. alpha
16. complementary
17. supplementary
18. gamma
19. vertical
20. delta

## Solutions: Lesson 6

## Systematic Review 6C

1. 2; 5: If the student referred to these angles using their three-letter names, that would be correct as well.
2. 4
3. BFD
4. BFE or AFD
5. BFD or AFC or AFE
6. 1
7. $40^{\circ}$; complementary angles
8. $40^{\circ}$; If $\mathrm{m} \angle 2=50^{\circ}$, then $\mathrm{m} \angle 1=40^{\circ}$, since $\angle 1$ and $\angle 2$ are
complementary. If $\mathrm{m} \angle 1=40^{\circ}$, then $\mathrm{m} \angle 4=40^{\circ}$, since $\angle 1$ and $\angle 4$ are vertical angles.
9. 1 or 4
10. $140^{\circ}$; supplementary angles
11. any two of angles 1,2 , and 4
12. $\angle 3 ; \angle C F E$
13. Use a ruler to check. The segments on each side of the bisector should measure $\frac{3}{4}$ in.
14. Use a protractor to check. The angles on each side of the bisector should measure $26^{\circ}$.
15. perpendicular
16. $90^{\circ}$
17. $180^{\circ}$
18. $90^{\circ}$
19. $180^{\circ}$
20. empty or null

## Systematic Review 6D

1. true
2. false: They are complementary.
3. true
4. false: Perpendicular angles were not in the list of given information.
5. false: ray GK is the common side.
6. true
7. $39^{\circ}$ : vertical angles
8. $51^{\circ}$ : complementary angles
9. $90^{\circ}$ : perpendicular lines form $90^{\circ}$ angles
10. right
11. supplementary
12. $360^{\circ}$
13. f
14. e
15. b
16. a
17. g
18. d
19. $h$
20. c

## Systematic Review 6E

1. lines $Q R, R V$, and $Q V$
2. $\overline{\mathrm{RT}}, \overline{\mathrm{XR}}, \overline{\mathrm{XT}}$
3. $360^{\circ} \div 8=45^{\circ}$

## Solutions: Lesson 6

```
4) 90
5) obtuse
6) yes; each is }9\mp@subsup{0}{}{\circ
7) no
8) yes
9) }3
10) }
11) acute
12) }3\mp@subsup{0}{}{\circ
13) }3\mp@subsup{0}{}{\circ
14) RQ
15) Use your ruler to check that the resulting line segments are equal in length.
16) Use your protractor to check that the resulting angles are equal in measure.
17)
18)
19)
20)
```


## Solutions: Lesson 6 Test

1) E supplementary
2) C congruent
3) $\mathrm{B} \quad 90^{\circ}-35^{\circ}=55^{\circ}$
4) $\mathrm{C} 180^{\circ}-40^{\circ}=140^{\circ}$
5) E complementary $\left(20^{\circ}+70^{\circ}=90^{\circ}\right)$
6) B $\angle 2$ and $\angle 5$
7) A $90^{\circ}$ because of perpendicular lines
8) E can't tell from information given
9) $\mathrm{D} \angle 1$
10) A $\angle 1$ and $\angle 2$ are complementary,
together with $\angle 3$ make a straight anole
11) C same because they are vertical angles
12) D We don't know the measures of $\angle 4$ and $\angle 5$.so cant determine their sum
13) $A \stackrel{\leftrightarrow}{F C}$
is a straight line, so $\angle 1$ would be included to make $180^{\circ}$
14) D the measures of these angles is not given, looking the same is not sufficient.
15) A $90^{\circ}+90^{\circ}<185^{\circ}$

## Honors (Extra Practice): Lesson 6

Here are some more figures you may use to practice your bi-section skills.

1. Draw the perpendicular bisectors of each line inside the square.

2. Using dotted lines or a different colored pencil, bisect each angle in the original square.
3. Draw the perpendicular bisectors of each side of the triangle. You have marked off two line segments on each side of the triangle. Now construct a perpendicular bisector for each of those line segments. What kinds of shapes do you see inside the large triangle?


## Honors (Extra Practice): Lesson 6

4. If you wish, draw other shapes and construct bisectors as you did above. Try parallelograms, trapezoids, octagons, and other kinds of triangles for interesting results.

## Read and follow the directions.

5. Lindsay's base pay is $X$ dollars an hour. For every hour of overtime she works, she gets her base pay plus . 5X. Last week she worked six hours of overtime. Let $P$ be her total overtime pay for the week, and write an equation to find $P$.
6. Lindsay's base pay is $\$ 8$ an hour. Use the equation you wrote in $\# 9$ to find her total overtime pay for the week.

## Honors (Extra Practice) Solutions: Lesson 6

Lesson 6
1)

2)

3) triangles, squares, trapezoids, pentagons

4) answers will vary
5) $P=6 X+.5(6 X)=6 X+3 X=9 X$
6) $P=9 X$
$P=9(8)$
$P=\$ 72$


## CONTACT

0290943390 / 0863115998
info@mathsaustralia.com.au
WWW.MATHSAUSTRALIA.COM.AU

